Fipronil is a potent open channel blocker of glutamate-activated chloride channels in cockroach neurons.

نویسندگان

  • Xilong Zhao
  • Jay Z Yeh
  • Vincent L Salgado
  • Toshio Narahashi
چکیده

Fipronil, a phenylpyrazole insecticide, displays high insecticidal activity and reduced mammalian toxicity. To better elucidate the mechanism of its selective toxicity between insects and mammals and activity against dieldrin-resistant insects, we studied fipronil action on glutamate-gated chloride channels (GluCls), unique invertebrate ligand-gated chloride channels, in cockroach thoracic ganglion neurons, using the whole-cell patch clamp technique. Glutamate evoked two types of chloride currents, a desensitizing current and a nondesensitizing current. Fipronil differentially inhibited these two types of currents with different potencies and with different rates of reversibility. Fipronil inhibited the desensitizing and nondesensitizing GluCls with IC50 values of 801 and 10 nM, respectively. Kinetic analysis revealed that fipronil blocks required channel opening. Recovery of the desensitizing current from fipronil block required channel opening, whereas recovery of nondesensitizing current from block was independent of channel opening. The high potency of fipronil against the nondesensitizing current was due to a slow unblocking rate constant. In addition, when the nondesensitizing GluCls were occupied by picrotoxinin, the receptors became less sensitive to fipronil block. It is concluded that GluCls are a critical target for fipronil, especially for the selective toxicity between mammals and insects, and that fipronil block of GluCls may play a role in the lack of the cross-resistance with dieldrin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfone metabolite of fipronil blocks gamma-aminobutyric acid- and glutamate-activated chloride channels in mammalian and insect neurons.

Fipronil sulfone, a major metabolite of fipronil in both insects and mammals, binds strongly to GABA receptors and is thought to play a significant role in poisoning by fipronil. To better understand the mechanism of selective insecticidal action of fipronil, we examined the effects of its sulfone metabolite on GABA- and glutamate-activated chloride channels (GluCls) in cockroach thoracic gangl...

متن کامل

Differential actions of fipronil and dieldrin insecticides on GABA-gated chloride channels in cockroach neurons.

Fipronil and dieldrin are known to inhibit GABA receptors in both mammals and insects. However, the mechanism of selective toxicity of these insecticides between mammals and insects remains to be seen. One possible mechanism is that insect GABA receptors are more sensitive than mammalian GABAA receptors to fipronil and dieldrin. We examined differential actions of fipronil and dieldrin on GABA-...

متن کامل

Dorsal unpaired median neurons of locusta migratoria express ivermectin- and fipronil-sensitive glutamate-gated chloride channels.

Together with type A GABA and strychnine-sensitive glycine receptors, glutamate-gated chloride channels (GluCl) are members of the Cys-loop family of ionotropic receptors, which mediate fast inhibitory neurotransmission. To date, GluCls are found in invertebrates only and therefore represent potential specific targets for insecticides, such as ivermectin and fipronil. In this study, we identifi...

متن کامل

Inhibitory glutamate receptor channels in cultured lobster stomatogastric neurons.

Inhibitory glutamate receptor channels (IGluRs) are ligand-gated ionotropic receptors related to ionotropic gamma-aminobutyric acid (GABA) and glycine receptors and expressed in neural and muscular tissues. In the crustacean stomatogastric ganglion (STG), IGluRs mediate recurrent synaptic inhibition central to the rhythmogenic capabilities of its embedded neural circuits. IGluRs expressed in cu...

متن کامل

Meroterpenoid Chrodrimanins Are Selective and Potent Blockers of Insect GABA-Gated Chloride Channels

Meroterpenoid chrodrimanins, produced from Talaromyces sp. YO-2, are known to paralyze silkworm (Bombyx mori) larvae, but their target is unknown. We have investigated the actions of chrodrimanin B on ligand-gated ion channels of silkworm larval neurons using patch-clamp electrophysiology. Chrodrimanin B had no effect on membrane currents when tested alone at 1 μM. However, it completely blocke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 310 1  شماره 

صفحات  -

تاریخ انتشار 2004